Reversible inactivation of monkey superior colliculus. I. Curvature of saccadic trajectory.

نویسندگان

  • H Aizawa
  • R H Wurtz
چکیده

The neurons in the intermediate layers of the monkey superior colliculus (SC) that discharge before saccadic eye movements can be divided into at least two types, burst and buildup neurons, and the differences in their characteristics are compatible with different functional contributions of the two cell types. It has been suggested that a spread of activity across the population of the buildup neurons during saccade generation may contribute to the control of saccadic eye movements. The influence of any such spread should be on both the horizontal and vertical components of the saccade because the map of the movement fields on the SC is a two-dimensional one; it should affect the trajectory of saccade. The present experiments used muscimol injections to inactivate areas within the SC to determine the functional contribution of such a spread of activity on the trajectory of the saccades. The analysis concentrated on saccades made to areas of the visual field that should be affected primarily by alteration of buildup neuron activity. Muscimol injections produced saccades with altered trajectories; they became consistently curved after the injection, and successive saccades to the same targets had similar curvatures. The curved saccades showed changes in their direction and speed at the very beginning of the saccade, and for those saccades that reached the target, the direction of the saccade was altered near the end to compensate for the initially incorrect direction. Postinjection saccades had lower peak speeds, longer durations, and longer latencies for initiation. The changes in saccadic trajectories resulting from muscimol injections, along with the previous observations on changes in speed of saccades with such injections, indicate that the SC is involved in influencing the eye position during the saccade as well as at the end of the saccade. The changes in trajectory when injections were made more rostral in the SC than the most active burst neurons also are consistent with a contribution of the buildup neurons to the control of the eye trajectory. The results do not, however, support the hypothesis that the buildup neurons in the SC act as a spatial integrator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superior Frontal Gyrus

colliculus in active visual fixation and execution of express saccades. J Neurophysiol 67:1000–1002 6. Krauzlis RJ, Basso MA, Wurtz RH (1997) Shared motor error for multiple eye movements. Science 276:1693–1695 7. Keller EL, Gandhi NJ, Vijay Sekaran S (2000) Activity in deep intermediate layer collicular neurons during interrupted saccades. Exp Brain Res 130:227–237 8. Lefevre P, Quaia C, Optic...

متن کامل

Reversible inactivation of monkey superior colliculus. II. Maps of saccadic deficits.

Neurons in the superior colliculus (SC) are organized as maps of visual and motor space. The companion paper showed that muscimol injections into intermediate layers of the SC alter the trajectory of the movement and confirmed previously reported effects on latency, amplitude, and speed of saccades. In this paper we analyze the pattern of these deficits across the visual field by systematically...

متن کامل

Sequential activity of simultaneously recorded neurons in the superior colliculus during curved saccades.

The visual world presents multiple potential targets that can be brought to the fovea by saccadic eye movements. These targets produce activity at multiple sites on a movement map in the superior colliculus (SC), an area of the brain related to saccade generation. The saccade made must result from competition between the populations of neurons representing these many saccadic goals, and in the ...

متن کامل

Optogenetic Inactivation Modifies Monkey Visuomotor Behavior

A critical technique for understanding how neuronal activity contributes to behavior is determining whether perturbing it changes behavior. The advent of optogenetic techniques allows the immediately reversible alteration of neuronal activity in contrast to chemical approaches lasting minutes to hours. Modification of behavior using optogenetics has had substantial success in rodents but has no...

متن کامل

A neural correlate for the gap effect on saccadic reaction times in monkey.

1. The reduction in saccadic reaction time associated with the introduction of a period of darkness between the disappearance of an initial fixation point and the appearance of a new peripheral saccade target is known as the gap effect. Fixation cells in the rostral pole of the monkey superior colliculus have been implicated in the control of active visual fixation and suppressing saccadic eye ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 79 4  شماره 

صفحات  -

تاریخ انتشار 1998